Quantum mechanical geometry optimization in solution using a finite element continuum electrostatics method
نویسندگان
چکیده
We present a new algorithm for performing ab initio solution phase geometry optimizations. The procedure is based on the self consistent-reaction-field method developed in our laboratory which combines electronic structure calculations with a finite element formulation of the continuum electrostatics problem. A gradient for the total solution phase free energy is obtained by combining different contributions from the gradient of the classical polarization free energy and the derivatives of the quantum mechanical energy. The method used in obtaining the classical gradient is based on exact linear algebra relations and a Green function formalism due to Handy and Schaefer. Both the classical and quantum mechanical gradients are validated by comparison with energy finite differences. The result of applications to a number of small organic compounds are discussed. Comparisons between the predicted location and depth of the various solution phase minima of the Ramachandran map for the alanine dipeptide and those reported by Gould et al. are also presented. © 1996 American Institute of Physics. @S0021-9606~96!01533-4#
منابع مشابه
Investigating the Effect of Joint Geometry of the Gas Tungsten Arc Welding Process on the Residual Stress and Distortion using the Finite Element Method
Although a few models have been proposed for 3D simulation of different welding processes, 2D models are still more effective in design goals, thus more popular due to the short-time analysis. In this research, replacing "time" by the "third dimension of place", the gas tungsten arc welding process was simulated by the finite element method in two dimensions and in a short time with acceptable ...
متن کاملUsing Pattern Search Algorithm and Finite Element Method to Detect Rotor Cracks
The vibration pattern of a rotor system reflects the mechanical parameter changes in the system. Hence, the use of vibration monitoring is considered as a possible means of detecting the presence and growth of the cracks. In this paper, a pattern search based method for shaft crack detection is proposed and described which formulates the shaft crack detection as an optimization problem by means...
متن کاملUpdating finite element model using frequency domain decomposition method and bees algorithm
The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...
متن کاملOptimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method
As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlPySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides th...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کامل